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Abstract

The photolysis of CH 3 ONO, alone and in the presence of NO, NO-N
2

mixtures, and NO-CO mixtures was studied between.25 and 150 C. The major

products are CH
2
O, N 2 0, and H20. We have not measured CH 2 0 and H

2
0,

but have measured the quantum yields of N20. The steps responsible for

these products are

CH 3 ONO + hv -- CH30 O + NO Rate = ) Ia

CH 0" + M - CH30 + M 1

CH30 + NO CH 2 0 + HNO 2a

~- CH3ONO 2b

CH3ONO" +M - CH3ONO + M 3

2HNO - H 2 0 + N20 4a

CH30 - CH 2O + H 6

H + NO + M - HNO + M 7

The N20 yield is large at low pressures but approaches a high-pressure

limiting value of 0. 055 at all temperatures as the excited CH 30 (CH30.)

produced in the primary, step is stabilized by collision. With this value and

the primary quantum yield of 0. 76 for reaction 1, the ratio k2a /k
2

= 0.145

where k2 k2a + k2b. Nitrogen is also a product of the reaction and is

produced from two sources

2HNO - H 2 0 2 + N
2

4b

HNO + 2NO N
2

+ HNO 3 5

where k 4 a/k4 b = 51 at all temperatures. Reaction 5 is second-order in [NO]

at low [NO], but becomes first-order in [NO] at high [NO],

In the presence, of excess CO, the N
2

0 yield drops, and CO
2

is produced

(though not in sufficient amounts to account for the drop in N 2 0). The indicated

additional reaction is

CH 3 0 + CO - products 8

with k /k 2 - 5 x 10- 4 at all temperatures.

When pure CH 3 ONO is photolyzed, CO is produced and NO accumulates in

the system. Both products are formed in related processes and result from



CH30 attack on CH20

CH30 + CH20 - CH30H + HCO3

ii

11
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Introduction

The methoxy radical is present in both the upper and lower atmospheres.

In the upper atmosphere it is produced from the oxidation of CH 3 , which in

turn, comes from either the photolysis of CH 4 or the reactions of CH 4 with

O( D) or HO. In the lower atmosphere CH 3 0 is an intermediate in-the photo-

chemical oxidation of hydrocarbons, and it may be important in the conversion

of NO to NO2 in polluted urban atmospheres.

Because of the importance of CH30 in the atmosphere, we have initiated

studies ofthe reactions of this radical with other atmospheric gases such as

NO, CO, O2, NO 2 , and SO 2 . As a.source of CH30, the photolysis of CH3ONO

2-10
was used. A number of previous investigators have shown that CH3ONO

photodecomposes readily via

CH3ONO + hv -h CH30 + NO

though-the primary quantum yield might be less than unity.9 Other studies in

our laboratory have now established that q, the primary quantum yield, is

0. 76. The asterisk on CH30 indicates that it may contain excess energy

and require deactivation to be stabilized.

CH30'+ M CH30 +M 1

As the reaction proceeds, the major products are CH
2
0, N

2
0 and H 2 0.

These products can be attributed.to the reactions of CH30 with NO

CH30 +. NO CH20 +: HNO .2a

CH30 +iNO - CH3ONO* 2b

CH ONO + M CH3ONO + M 3

2HNO H20 +O-N20 4a

The presence of HNO has been definitely established, 3 9 and Napier and

Norrish, as well as other studies in our laboratory, have shown that it

arises principally (if not entirely) from reaction 2a and not from the primary

photolytic act. Furthermore, McGraw and Johnston found :k2 /k 2 =:0..11

at room temperature, wherek
2

= k 2 a + k 2 b. They reasonably, but

erroneously, assumedthat p = 1. 0 and thus deduced that k2b/k2a = 8.0.errneusl, ssuedhat~ = i 0 an tus edcedt Zb Za2,
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This system appeared to be well characterized. However, as our work

progressed, other previously unreported effects were apparent. Thus we have

re-examined the photelysis of CH
3

ONO and CH3 3 NO@-NO mixtures at 3660A in

detail. In the latter case, experiments were also done with excess N
2

or CO

present. The results of these studies are reported here.
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Exper imental

Materials: Methyl nitrite was prepared by the dropwise additionof 30%

H 2 SO 4 to a saturated solution of NaNO2 in methyl alcohol. An oxygen-free N 2

stream was used.to carry the gaseous methyl nitrite through traps of ascarite,

potassium bicarbonate and mercury before being condensed at -800C. The pale

yellow product was then fractionated in vacuo(-110 ° to -130 ° ) and stored in a

darkened flask at -1960.

Azomethane was prepared from dimethyl hydrazine and mercuric oxide

by Renaud and Leitch's method. It was purified by distillation under vacuum

(-110 ° to -1300) and stored at -196.

C.;P. grade N 2 and CO from the Matheson Co. were purified by slow

passage through a trap filled with glass wool at liquid argon temperature,

resulting in the complete removal of the C02 impurity. Nitric oxide (Matheson

Co.) was fractionally distilled under vacuum to remove all impurities.

Apparatus and Analysis: . The photolysis took place in a cylindrical (50. x

*100 mm) quartz reaction cell enclosed in an aluminum block furnace. Tempera-

ture regulation within 0.1° was achieved by a bridge circuit temperature control

.(Cole-Parmer Inst. Co. ). A conventional vacuum line, kept grease-free through

the use of Teflon stopcocks with Viton "O" rings,, was used to store and transfer

the reagents to the reaction cell. The radiation sources were Hanovia, type

30620, medium pressure mercury arcs, and were used in conjunction with

0-52 and 7-54 Corning glass filters to isolate the 3660A line.

All products were analyzed by gas chromatography using a thermistor

detector. A 3-meter, type Q-S Porapak column, at 0° and He flow rate of

60 cc/min was used to measure the N
2
0 and CO 2 In experiments with

added CO and N 2, the exce.ss reactants were removed by slow passage through

two traps filled with glass wool at -196 . The non-condensable gases, NO, N 2 ,

and CO, were collected with a Toepler pump and analyzed on a 2-meter 5k

Molecular Sieve Column at 400 and a He flow rate of 50 cc/min.
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Actinometry: Quatnum yields were based on light intensities measured

by the photolysis of azomethane. The non-condensable gases, N 2 and CH 4 , were

0
collected with a Toepler pump and analyzed by gas chromatography on the 5A

Molecular Sieve Column. For the conditions of the experiments ~({N 2 = 13

Absorption of the 3660g radiation by reagent and actinometer gases was

matched at all temperatures. Extinction coefficients were determined by using

the lamp-filter combination as a light source and an RCA 935 phototube to

measure the radiation. For methyl nitrite and azomethane the extinction

coefficient (to base 10) were: 2.48 x 10- 3, 2.18 x 10 - 3 1.91 x 10 3 and 1.76 x

-3 -I -1 -4 -4 1-4
10 Torr cm for methyl nitrite and 1.87 x 10 , 1.73 x 10 4 , 1.64 x 10

and 1. 59 x 10 Torr cm for azomethane at 250, 800, 125 ° , and 1500

respectively.
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Results

Mixtures of CH3ONO and NO were photolyzed at 25, 80, and 1500 C. The

products measured were N 2 0 and N 2 0 No attempt was made to analyze for either

CH 2 0 or HZOo At 150 C, some pyrolysis of CH 3ONO also was observed in

conformance with the findings of Phillips. 14 However, the pyrolytic reaction

was much less important than the photolytic reaction, and all the reported quantum

yields have been. corrected for the pyrolytic reaction as measured in separate dark

runs.

Initially, mixtures of 30 Torr CH O3NO and about 1 Torr of NO were photo-

lyzed to various extents of conversions at the three temperatures, The -quantum

yield of NZ0, · {N 2 0}, was monitored and the results are shown in Table, I. For

these pressures t {N 2 0} was about 0. 075 independent of the- extent of conversion

and nearly independent of the temperature.

Next, a series of runs was done at 25 C for various mixtures of NO and

CH30ONO. The results are shown in Table II. For [NO] - 1 Torr, the N
2

is

almost undetectable. t {N 2 0} drops from 0. 25 at [CH3ONO] = 2. 3 Torr to about

0.055 for high CH 3 ONO pressures. However, as [NO] is augmented, {N 2 }.

increases in importance, and this increase is accompanied by a decrease in t {N 2 0}

until ultimately Z {N2 } > D {N 2 0 }

In order to see if the drop in b {N
2

0} with increasing [CH
3

ONO] was due to

chemical reaction or an inert gas effect, experiments were done with excess N 2

added. These results are shown in Table III. The addition:.of :N2 ; rej!uced t {(NZO}

at all three temperatures, and the same limiting value of about 0. 055 was obtained.

Experiments with excess CO added are shown in Table IV, Calvert1 5 had

evidence that CH 3 0 could react with CO to produce CO 2 , and we wished to verify

this observation. We do find that CO 2 is produced, though in small amounts, but

its quantum yield increases with [CO] /[NOj. Furthermore, at the higher tempera-

tures, i{NzO} is reduced below the value found at high pressures of CH 3 0NO orNZ

.in the absence of CO. This additional reduction in tf{N20} is further evidence that2
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CO is removing CH30 radicals, thus diminishing the importance of reaction 2a.

Finally, three series of runs were done with pure CH3ONO at the same molar

concentration and with the same absorbed intensity, Ia, but at 25, 80, and 125 C.

The last series was done at 1250 rather than 150 0°C to eliminate the dark reaction.

In each series, runs were done for different irradiation times, and four of the

products (N 2 0, N 2 , CO, and NO) were monitored. Methanol was also found, but

quantitative analysis was not done. The results are shown in Figs. 1-4.

The amounts of N
2

0 and N
2

as a function or irradiation time are shown in

Figs. 1 and 2, respectively. Both products show an induction period of about 4

minutes, but then grow linearly with time, the rate of growth being independent of

temperature. The quantum yields obtained from the slope of the straight line por-

tion, O f{N 2 O} and Df{N 2 }, are listed in Table V. · f{N 2O} is similar to · {N
2

0}

for runs with about 1 Torr of NO initially added at the same CH3ONO pressure.

Fig. 3 shows the amount of CO produced vs. irradiation time. There is a

significant induction period (15 35 min.), after which CO grows linearly with time.

The quantum yields obtained from the linear portions, ' f{CO}, increase with

temperature and they are listed in Table V. The amount of NO produced vs. irradia-

tion time is shown in Fig. 4. The NO rises rapidly for about 20 min., after which

it grows linearly; at a slower rate. The quantum yields obtained from the slope of

the later linear period, cf{NO}, also increase with temperature and they are listed

in Table V.



Discussion

The results of the photolysis of CH 3 ONO-NO mixtures are generally consistent

,with the mecdharii:sm ,donsis'ting ofth:e reactions :listed; in the, Iitr.odc'utibn'-n'.:H w- 

ever, there are two observations not explained by the mechanism. These are the

production of N2 and the pressure dependence of. {N20)}.

The production of N
2

at high NO pressures can be attributed to the reaction

of NO with HNO. This reaction.; has been reported previously, but two different

16
mechanisms have been suggested. 

HNO + 2NO - N 2 .+ HNO 5
2 35

or

HNO + 2NO" +N + NO 3. " N

followed by .' '

H + NO -HNO ..

NO 3 + NO - ZNO2

In the former case, since HNO is consumed, the N2 should be-formed at the

expense of N 2 0. In the latter case, HNO is regenerated and O {NzO} should be

unaffected. The results in Table II clearly support the former case, reaction 5.

In fact, if reaction 5 is operable, then 2e{N 2 0}++ ${N2 } should be constant at any

pressure of CH3ONO. This sum is listed in Table II and the expectation is confirme

Reaction 5 is an overall reaction which is presumably.first-order in [HNO],

but of unknown order in [NO]. The. mechanism-predicts that

I
a

1/ {N }/(({N O}) 1/k [NO2./k

where n is the order of reaction 5 with respect to [NO]. Fig. 5 is a log-log plot

of the left-hand side of eqn. I vs.. [NO]. The plbt is not linear, but at low [NO]

approaches a slope of two; and at high; [NO], approaches a slope of about one. Thus,

reaction 5 itself is a complex reaction which can be represented by 1 6

HNO + NO = HN 0 z 5a

HN +NO HNO3+ N2
:HN 2 0 + .NO HNO3 + N 5b
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The expanded rate law then becomes

I1/2 {N
2
}/{)N

2
0 /

2
= kakb[NO] 2/k4a/2 (k 5a + k5b[NO] ) II

At low [NO], n = 2, and k5 = k5ak5b/k 5a; while at high [NO] , n = 1, and

k 5 = k5a. Values for the appropriate ratios are listed in Table VI.

The other unexpected result is the pressure dependence of ({N 2 0}, which

can be attributed to an inert gas effect, since N2 also produces the effect. There

are three possible explanations: 1) Energetic CH30 radicals are formed in the

primary process which have a value different than thermal CH 30 for k2a/k
2
b,

2) The energetic CH 3 ONO" produced in reaction 2b can redissociate unless

stabilized by collision, or 3) Energetic CH3 0 radicals formed in the primary

process can dissociate before collisional stabilization.

CH30* CH20 + H 6

The H atoms would be scavenged by NO to produce HNO

H + NO +M - HNO + M 7

In the first case, Zf{NZO) + f{N
2

} should depend on the ratio [M]/[NO],

whereas in cases 2 and 3, 2ff {N 2 0} + ( {N 2 } should depend only on [M] ,

where [M] is the total effective concentration of quenching gas. The results

in Table II show no inverse dependence on [NO] and thus the first possibility

is eliminated.

The second possibility cannot be ruled out on the basis of the information

here, but can be shown to be unlikely from a consideration of the thermal

decomposition of CH3ONO, which was studied long ago by Steacie and Shaw. 17

They found the decomposition to be first-order even at 33 torr at 230 0C. Since

at lower temperatures, the first-order regime should extend to even lower

pressures, it is unlikely that reaction -2b could compete with reaction 3 under

our experimental conditions.

The most likely explanation for the pressure dependence is the third of

the above possibilities. There is evidence for "hot" radical production in the

photolysis of the higher alkyl nitrites, 18, 19 though not in C 2 H 5 ONO at 3660Rj. 20
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With reactions 5-7 included, the mechanism predicts that

(k6 + kl k2a [M] /k2 z )

2 · {N20} + ({N2} III
kl [M] + k6

where k2 = kza+ kb. Fig. 6 is a plot of 2D{N20} + O{N2 } vs. [CH3NO] at

25 C for runs in which CH 3 ONO is the principal deactivating gas. The intercept

gives kz2 /k 2 =:0.11. Earlier results 1 6 suggested a value of O at 25 C.

10
However, our value agrees exactly with that of McGraw and Johnston, who

photolyzed 1 Torr of CH 3 ONO in.the presence of 1 atm of N 2 . Consequently,

their observed.branching ratio is for the high-pressure limiting case. Our

results in Tables I and .III and Fig 1 indicate that this ratio is independent of

temperature. . The only other high-temperature value reported.for k2a/k2

is 0. 33 at 174 C. 21 Unfortunately, the reactant pressures are not given,, but

presumably they were below those necessary to completely stabilize CH30*

and the reported branching ratio:is greater than k2a/k2 . The slope of the

linear portion.of Fig. 6 gives k 6 /kl = 1.94 Torr for CH 3 ONO as the quenching

gas. As [CH3ONO]
-

becomes very large, the ordinate of Fig. 6 should approach

It is clear from the graph that .this value is significantly less than unity

and greater than 0. 5. The limiting value was not achieved under the experi-

mental conditions used here, but the value of 0. 76 was found elsewhere.

For reaction mixtures with excess CO added, an additional reaction must

be added.

CH30 +.CO - products 8

If every time reaction 8 occurred CO
2

was produced, thenthe drop in b{N2 O}

should be 0.055 c{CO
2

} and

c {CO2 }/ C{N 2 0} = 2k 8 [ CO] /k2a[ NO] IV

Fig. 7 is a log-log plot of {ICO2}/J {N20} vs. [CO]./[NO] at 150°C. A

reasonable straight line of unit slope can-be drawn through the points-which

yield a value of 2. 4 x 10 for k8/k2a. However,, the data in TableIV indicate~8 Za'
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that the fall-off in c1{N 2 O} is very much greater than 0. 055 C{CO)2 , so that

k8/k a may be about 10 times larger. This discrepancy between the fall-off

in ( {N 2 O} and 0.055 I(CO 2 } is much more pronounced at the lower tempera-

tures. Also, at the lower temperatures ({CO
2)

} increases much slower than

first-order in [CO] /[NO] . Apparetnly the principal product is not CO 2 ,

but perhaps (CH30) 2 CO or (CH3OCO)2. From the fall-off in s(N20}, k8/k
2

is estimated to be - 5 x 10 - 4 at 80 and 150°C. An estimate at room temperature

is difficult to make because so little CO
2

was produced that it was necessary

to work at low NO pressures. A very rough estimate would be about 10 4

but this is probably low because significant amounts of NO are being produced

during the run. In all likelihood, k8/k 2 4 5 x 10 -
4 almost independent of

temperature. Furthermore, most of the time that reaction 6 proceeds, CO
2

is not produced.
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If pure CH3ONO is photolyzed, then NO, which is not present initially,

accumulates in the system. In the early stages, the CH30 radicals are removed
3

via
2CH30 - CH20 + CH3OH 9a

- CH 3 OOCH 3 9b

CH30+ HNO - CH3OH + NO 10

However, very quickly the NO pressure becomes sufficient to suppress these

reactions, reactions Za and 2b dominate, and N20 is produced. This is shown in

Fig. 1 where N 2 0 grows linearly with time after a short induction period of about

4 minutes. At 4 minutes [NO] - 5 x 10 -6M, as seen from Fig. 4. The rate of

reaction 9, Rf9}, relative to that for reaction 2, R(2), is given by

R{9, }/R2} = k9Ia/k2 [NO] V

22 9. 9 -1 
Since k 9 has been estimated to be 109- 9M-1sec and k

2
has been estimated

7o -1 5-1
to be 5 x 10 7M sec , reaction 9 can be shown to be only one per cent as important

as reaction 2 at this pressure of NO, and it decreases in importance as [NO] 2

The relative importance of reaction10 can be estimated from

1/2
RfIO}/R{2 } = k( ' {N 2 0 )Ia/k 4 /k 2 [NO] VI

At the end of the induction period, where [NO] - 5 x 10 6 M, R{10} - R{2}. The

10 10 .4 .-1rate constant klhas been estimated
1 0 to be 3 x 10 10M

-1

sec . Thus k 4 a must be

8 108 - 1-16
about 10 M sec which is about 100 times larger than that for DNO. 16

The rate of growth of N 2 (Fig. 2) exactly parallels that for N 2 0 and is

independent of [NO]. The indicated reaction is

2HNO - 'H 202 + N2 4b

where the reaction probably involves the isomeric HON form of HNO and proceeds

through a four-center intermediate. The ratio k 4 a/k 4 b is given by f({N 2O}/ f{N
2 }

and is 51.

It is still necessary to explain both the CO and NO production after the inductic

period. Figs. 3 and 4 show that these products grow linearly with time after the
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induction period, the rate of production of each increasing with temperature.

CO production must come from CH20 removal and NO production from CH
3

0

removal. The indicated reaction is

CH30 + CH CH 
3

OH + HCO 11

The HCO radical must be scavenged by NO to ultimately produce CO. 8, 23
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Table I: Effect of Irradiation Time on
the Photolysis of Mixtures of
CH 3 ONO and NO.

Irradiation
Time, min

[NO], Torr

Temp = 25 0 C, [CH 3 0NO]

5. 00

30. 00

30, 00

30. 00

50. 00

100. 00

200. 00

= 30 Torr,.I =

1. 83

1. 04

1. 49

2. 18

3. 18

0. 82

1, 18

1. 88 x 10
-

6 Einstein/l 1-min

0. 088

0. 093

0. 086

0. 085

0, 087

0. 084

0. 084

Temp = 80°C. [CH3ONO] = 30 Torr,, I a = 2. 07 x 10o 6 Einstein/l-min3 a

50. 00

100,00

100.00

120. 00

200. 00

1. 29

1. 42

I...51

1. 38

1. 30

0. 072

0. 075

0. 072

0. 074

0. 066

Temp = 150°C, [CH 3 ONO] = Torr, I =

63. 00 0. 72

120. 00 1. 33

2. 26 x 10-6 Einstein/1-min

0. 075

0. 073

O {N 0}2
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.Table III: Photolysis of Mixtures of CH30NO
and NO in the Presence of N 2 0
Irradiations Time = 30.Min.

[N2 ], Torr [NO], Torr

Temp = 2 5°C, [CH3 ONO]

37

67

100

139

311

454

677

= 30 Torr, Ia

1. 08

1.89

1. 29

1. 65

0.98

1. 81

1. 58

= 1.88 x 10 -6 Einstein/ -min

0. 087

· 0. 082

.0. 080

0. 073

0.061

0. 063

0. 061

. Temp = 80 C, [CH 3 ONO] = 30 Torr,. I a

I0

79

144

.213

314

571

0.94

0O 87

1. 30

1. 55

1.42

1. 00

Temp = 150°C, [CH3ONO] = 30 Torr, I
a

0

291

473

608

1. 18

1. 10

1. 10

1.31

= 2, 64 x 10 6 Einstein/1-min

0. 078 ( )

00 068

0.,061

0. 059

0. 052

.0051

=:2. 23x 106 - Einstein/1 -min

0. 087

0. 065

0O 059

0. 055

: (a) Irradiation: Time = 60.Min.

{N2 0 }
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Table IV: Photolysis of Mixtures of CH ONO
and NO in the Presence of CO.

[CO] /[NO] [NO], Torr [CO], Torr Irradiation
Time, min

O {N2 0} 10o 3 co 2 }

Temp = 25 0 C, [CH3ONO] = 20 Torr,

4170 0. 091 .380

3670 0. 089 327

2600 0. 105 273

2490 0. 095 235

905 0.093 84

903 0.112 101

876 0o 105 92

703 0, 108 76

Temp= 800C, [CH 3 ONO] = 30 Torr,

743

585

483

400

254

208

162

142

141

49

1.00

1. 09

1.02

0. 84

0.96

2.55

1. 76

2.93

3. 23

7. 83

743

637

490

336

244

531

286

416

456

381

I = 0. 79 x 10 - 6 Einstein/l-mina

200. 0

360, 0

240. 0

270, 0

3000 0

272. 0

125.0

184.0

0. 067

0. 066

0. 070

0, 063

0. 084

0. 084

00. 079

0. 084

I 2. 16 x 10 6 Einstein/l-mina

175 0

265. 0

120 0

225. 0

180. 0

255. 0

195. 0

235. 0

270, 0

300. 0

0. 038

0,037

0. 044

0. 042

0. 049

0. 048

0. 049

0, 043

0. 046

0,. 051

Temp = 150 0 C, [CH3ONO]
3

1380

516

427

278

233

190

92

0057

0. 74

1. 04

1.20

1. 23

1.30

7, 23

= 30 Torr, I =
a

783

384

444

333

286

247

664

2. 26 x 10 - 6 Einstein/l-min

120. 0

120. 0

205. 0

185. 0

60. 0

60. 0

120, 0

0.034

0.040

0. 039

0,. 041

0, 056

00049

0. 037

4. 6

4. 0

3. 8

3. 7

2. 8

2. 8

2. 7

2. 9

2, 46

2. 02

2. 32

1, 81

1, 68

1. 45

1.48

1.63

1. 19

1. 37

20. 6

9. 5

8, 1

6. 0

5. 2

2. 6

2. 5
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Table V: Photolysis of CH3ONO3

Temp.,0 C [CH3 ONO], Torr 10' Ia,

Einstein/1 -min

1f(NN} Of (N
2
} Of {CO} f {NO}

0.072 0.0014

0, 072 0. ,0014

0.072 0.0014

25

80

125

22

25

30

49

50

50

0. 0053

0. 0088

0.0118

0. 041

0, 064

0. 084
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Fig. 1 Plot of N 2 0 production vs. irradiation time in the photolysis of
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Fig. 5 Log-log plot of Ia 1 /2 · {N 2 }/(- {N 2 0}) 1 / Z vs. [NO] in the photolysis
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Fig. 6 Plot of 2 {N20} + 4 {N 2
} vs. [ CH3NO ] - 1 in the photolysis of

CH 3 0NO-NO mixtures at 25 0 C.
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22

Cak N o
CQN CN ,

n O In
NC am c

0D 

C()

0
cN

o w

N -

_ 02

o 0S
w c

0
(D

o

0

N

0

CO

10f

0

' [O ZN] o01

0

0o)o
ot Ln U.) 4

I
E
I-

z

-

o
00

zn
to

Im
i(-)l

-4

k

:j
bo

N- U) VJ r)

- C
'9

H311./S30IOW



O

0

4
0

4

qt to to

N U) rO

0

t Ol t
NC 0 NC

0o <4

0
wo

(D

[EN] L01it31i1/S310OW '

23

C
E
I-

ZU

z
a

o

0
1.-

z

0

C.)
0

I0
m

(-

o w

0 2

N

G)

hO

by
.,,

w -

0
(0

0

0
IN

0,it cM



24

0

0

Cm
N

0
OD

0
I td%

E 

oz zS c

o 0c
z EC

iii~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

'1"

(D 0 LO ~ ~ ~ ~ ~ ~ ~ ~ (
cu (x r) rr 

o

0 <
0O0 0,

o~~~~~~ a~to. to

~~~~Ir G~~~~~~~~~~~~~~

'0

CM 0l 0 0 0r

C~~~~~~~~~~~~~~~~~~Q

0

O~~~~~~~~~~~~~~~~~~(

0L) to 04cn

CN 0 C 

CD~311/310 OI

0

-I I \ I/3-OW (0]'O 



O

'1

C

E

z-

()
z

0

ci:

z
0
C-

a) o o

C0 CN m

o .LQ a cL

>-
0

(U)

0

8311./S31O0W

25

0

0

C

o n

00-

a

0

0

o

0

(D Li C1

i

[ON] ,01



/
/

/
/

/
/

/,

//
/ //

/ /P
/

/

/

/
/

/

I I I . . . I
! I I I I I I I i I I i ,i

10

[NO], TORR

Figure 5

26

/
/ 0

-

0.1
-

7

3.

I . A

Ik

/,

l

I



dc Ci

{~~Nik·R +

27

q-

O

N,C~D

0d)

0O
CMl

CMl

O

I'-
0
H

*\

Q)
k

I

o N

toc'J

O9
mA

o
O.
0

0
O



0

0

O

I A II I I . . . . I

O.

{&ZN}I/{ O3o l

28

nf)
I0

N
0

t-Z-- a)
k

\ ,
I0 ~

LJ

. . . I I I I I I I I I 
-I i


